MSE-213 Autumn 2024 - Python Practice Week 3

Run in the conda mse213 environment, use a Jupyter notebook. If you have trouble with that, you can use
the online environment noto.epfl.ch

If you don’t know how to proceed, stackoverflow.org, google.com, chatgpt.com can be very helpful. For a
specific Numpy function, numpy.org has the documentation, or just type “np.function?” into Jupyter
(where function is the name of your function of course).

Task 1: The random walk.

The random walk is a simple model of great importance for understanding phenomena
such as thermal transport, charge diffusion, the stock market, bacteria and many others.

Write a script that implements a random walk. That is, starting from 0, at every step
decide randomly, with a 50:50 probability to either increase the number by one (move
right) or reduce it by one (move left), and find the value after n-steps.

- As afirst stage, implement this with a for-loop. Start with a list containing only [0]
and append randomly a number that is either one larger or one smaller than the
previous number. To make a random choice, you can use np.random.randint(2),
which gives you a random integer that is either 0 or 1 (the “endpoint” 2 is not
included in randint()and the standard start is 0).

- Make a line-plot showing the position of one trajectory after 100 steps.

To be more efficient (and later scale to larger dimensions), instead of running a loop, you
can directly use the np.random.randint() function to give you an array of random
numbers. For documentation and more examples, see
https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html

For example, if you use
np.random.randint (2, size=100) *2-1

You will get an array of 100 numbers which are either +1 or -1 (we have scaled the 0,1
that randint gives us).

To then get the position after i steps, you can use the np.cumsum() function (but be
careful to not miss the starting point — you can use np.concatenate() to add it).

- Make aline-plot to confirm that this worked correctly. Then, using size=(10,100)
in randint you can generate 10 trajectories at once — but make sure you sum over
the right axis in cumsum. Plot the result to check.

- Hence, create 1000 trajectories, and plot a histogram of their final positions after
(a) 10 steps, (b) 100 steps. (c)1000 steps

- Compute the mean and standard deviation (SD) of those distributions of final
positions after 10/ 100/ 1000 steps.

- Plot the SD as a function of step number (optional: show mean +-SD as shaded
areas)


https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html

MSE-213 Autumn 2024 - Python Practice Week 3

Now change the probability to 60:40 and 70:30 and 99:1, again plot the SD and
the mean as a function of step size (optional: with SD shaded). What type of
function do you recognize, and how does the slope depend on probability?
Optional: Plot the SD and the mean position after 1000 steps as a function of
probability for moving left.

Task 2: Be arandom number generator

Generating “true” random number is hard, in fact there are often unwanted correlations

that appear. Let’s illustrate that with “hand-made” random numbers. For this you will

need a keyboard, if you don’t have one, work with your neighbour.

Keeping 8 fingers on the 1-8 numbers on your keyboard, hit the keys as randomly
as possible until you have created a string containing at least 500 digits (this will
take about 1 minute. Using

a = np.array(list(str(3974582739452...871263)),dtype=int)
you can convert this into an array.

Use np.size(a) to check how long your array is, then create another array b of the
same size containing np.random.randint-generated random numbers.

Compute the mean and standard deviation of a and b. Are they what you expect?
Plot a histogram of a and b (use plt.hist([a,b],bins=np.arange(1-0.5,8+1+0.5)) to
get the right bin centers). Does it fit with what you expect?

Even if a distribution has the “expected” probability for each number, there may still be
hidden correlations. To find some, let’s look at the distance between consecutive

numbers. To compute it, we can use

aDistance = a[l:]-a[0:-1]

For Laplacian random numbers from 1-8, the probability one number to be the
same as the previous number is 1/8. How often does this occur in a? How often in
b? (a quick was to find this is plotting the histogram of aDistance). What do you
make of this?

Optional: The probability of the number 6 coming after 5 or 7 would be 2/7 for
random numbers. What is the frequency of this eventin a and in b?

Optional: Go further and compute the frequency of a number being the same as
the one before AND the one before that (probability 1/36).



